Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Inf Model ; 63(8): 2495-2504, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37026789

RESUMO

The globally expanding threat of antibiotic resistance calls for the development of new strategies for abating Gram-negative bacterial infections. The use of extracorporeal blood cleansing devices with affinity sorbents to selectively capture bacterial lipopolysaccharide (LPS), which is the major constituent of Gram-negative bacterial outer membranes and the responsible agent for eliciting an exacerbated innate immune response in the host during infection, has received outstanding interest. For that purpose, molecules that bind tightly to LPS are required to functionalize the affinity sorbents. Particularly, anti-LPS factors (ALFs) are promising LPS-sequestrating molecules. Hence, in this work, molecular dynamics (MD) simulations are used to investigate the interaction mechanism and binding pose of the ALF isoform 3 from Penaeus monodon (ALFPm3), which is referred to as "AL3" for the sake of simplicity, and lipid A (LA, the component of LPS that represents its endotoxic principle). We concluded that hydrophobic interactions are responsible for AL3-LA binding and that LA binds to AL3 within the protein cavity, where it buries its aliphatic tails, whereas the negatively charged phosphate groups are exposed to the medium. AL3 residues that are key for its interaction with LA were identified, and their conservation in other ALFs (specifically Lys39 and Tyr49) was also analyzed. Additionally, based on the MD-derived results, we provide a picture of the possible AL3-LA interaction mechanism. Finally, an in vitro validation of the in silico predictions was performed. Overall, the insights gained from this work can guide the design of novel therapeutics for treating sepsis, since they may be significantly valuable for designing LPS-sequestrating molecules that could functionalize affinity sorbents to be used for extracorporeal blood detoxification.


Assuntos
Lipídeo A , Penaeidae , Animais , Lipopolissacarídeos/farmacologia , Penaeidae/metabolismo , Penaeidae/microbiologia , Simulação de Dinâmica Molecular , Isoformas de Proteínas/metabolismo
2.
N Biotechnol ; 71: 37-46, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-35926774

RESUMO

Fusion protein technologies improve the expression and purification of recombinant proteins, but the removal of the tags involved requires specific proteases. The circularly permuted caspase-2 (cpCasp2) with its specific cleavage site, efficiently generates the untagged protein. While cleavage with cpCasp2 is possible before all 20 proteinogenic amino acids, cleavage before valine, leucine, isoleucine, aspartate and glutamate suffers from slow, and before proline extremely slow, turnover. To make the platform fusion protein process even more general such that any protein with an authentic N-terminus can be produced with high efficiency, the bacterial selection system PROFICS (PRotease Optimization via Fusion-Inhibited Carbamoyltransferase-based Selection) was used to evolve cpCasp2 into a variant with a catalytic turnover two orders of magnitude higher and the ability to cleave before any amino acid. The high specificity and the stability of the original circularly permuted protease was fully retained in this mutant, while the high manufacturability was mostly retained, albeit with decreased soluble titer. Four point-mutations are responsible for this change in activity, two of which are located in or near the binding pocket of the active site. This variant was named CASPON enzyme and is a major component of the CASPase-based fusiON (CASPON) platform technology. Applicability for the production of recombinant proteins was demonstrated by enzymatic removal of the CASPON tag from five model proteins. The CASPON tag enables high soluble expressions, affinity purification and good accessibility for cleavage. The five industry-relevant proteins of interest were FGF2, TNF, GH, GCSF and PTH.


Assuntos
Aminoácidos , Caspase 2 , Cromatografia de Afinidade , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes
3.
J Biol Chem ; 297(4): 101095, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34418435

RESUMO

Proteases serve as important tools in biotechnology and as valuable drugs or drug targets. Efficient protein engineering methods to study and modulate protease properties are thus of great interest for a plethora of applications. We established PROFICS (PRotease Optimization via Fusion-Inhibited Carbamoyltransferase-based Selection), a bacterial selection system, which enables the optimization of proteases for biotechnology, therapeutics or diagnosis in a simple overnight process. During the PROFICS process, proteases are selected for their ability to specifically cut a tag from a reporter enzyme and leave a native N-terminus. Precise and efficient cleavage after the recognition sequence reverses the phenotype of an Escherichia coli knockout strain deficient in an essential enzyme of pyrimidine synthesis. A toolbox was generated to select for proteases with different preferences for P1' residues (the residue immediately following the cleavage site). The functionality of PROFICS is demonstrated with viral proteases and human caspase-2. PROFICS improved caspase-2 activity up to 25-fold after only one round of mutation and selection. Additionally, we found a significantly improved tolerance for all P1' residues caused by a mutation in a substrate interaction site. We showed that this improved activity enables cells containing the new variant to outgrow cells containing all other mutants, facilitating its straightforward selection. Apart from optimizing enzymatic activity and P1' tolerance, PROFICS can be used to reprogram specificities, erase off-target activity, optimize expression via tags/codon usage, or even to screen for potential drug-resistance-conferring mutations in therapeutic targets such as viral proteases in an unbiased manner.


Assuntos
Caspase 2 , Cisteína Endopeptidases , Evolução Molecular Direcionada , Escherichia coli , Engenharia de Proteínas , Caspase 2/biossíntese , Caspase 2/química , Caspase 2/genética , Cisteína Endopeptidases/biossíntese , Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Humanos
4.
J Chem Inf Model ; 61(3): 1193-1203, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33570387

RESUMO

Rational-design methods have proven to be a valuable toolkit in the field of protein design. Numerical approaches such as free-energy calculations or QM/MM methods are fit to widen the understanding of a protein-sequence space but require large amounts of computational time and power. Here, we apply an efficient method for free-energy calculations that combines the one-step perturbation (OSP) with the third-power-fitting (TPF) approach. It is fit to calculate full free energies of binding from three different end states only. The nonpolar contribution to the free energies are calculated for a set of chosen amino acids from a single simulation of a judiciously chosen reference state. The electrostatic contributions, on the other hand, are predicted from simulations of the neutral and charged end states of the individual amino acids. We used this method to perform in silico saturation mutagenesis of two sites in human Caspase-2. We calculated relative binding free energies toward two different substrates that differ in their P1' site and in their affinity toward the unmutated protease. Although being approximate, our approach showed very good agreement upon validation against experimental data. 76% of the predicted relative free energies of amino acid mutations was found to be true positives or true negatives. We observed that this method is fit to discriminate amino acid mutations because the rate of false negatives is very low (<1.5%). The approach works better for a substrate with medium/low affinity with a Matthews correlation coefficient (MCC) of 0.63, whereas for a substrate with very low affinity, the MCC was 0.38. In all cases, the combined TPF + OSP approach outperformed the linear interaction energy method.


Assuntos
Caspases , Peptídeo Hidrolases , Simulação por Computador , Humanos , Mutagênese , Ligação Proteica , Termodinâmica
5.
Biomolecules ; 10(12)2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33255244

RESUMO

Caspase-2 is the most specific protease of all caspases and therefore highly suitable as tag removal enzyme creating an authentic N-terminus of overexpressed tagged proteins of interest. The wild type human caspase-2 is a dimer of heterodimers generated by autocatalytic processing which is required for its enzymatic activity. We designed a circularly permuted caspase-2 (cpCasp2) to overcome the drawback of complex recombinant expression, purification and activation, cpCasp2 was constitutively active and expressed as a single chain protein. A 22 amino acid solubility tag and an optimized fermentation strategy realized with a model-based control algorithm further improved expression in Escherichia coli and 5.3 g/L of cpCasp2 in soluble form were obtained. The generated protease cleaved peptide and protein substrates, regardless of N-terminal amino acid with high activity and specificity. Edman degradation confirmed the correct N-terminal amino acid after tag removal, using Ubiquitin-conjugating enzyme E2 L3 as model substrate. Moreover, the generated enzyme is highly stable at -20 °C for one year and can undergo 25 freeze/thaw cycles without loss of enzyme activity. The generated cpCasp2 possesses all biophysical and biochemical properties required for efficient and economic tag removal and is ready for a platform fusion protein process.


Assuntos
Caspase 2/biossíntese , Cisteína Endopeptidases/biossíntese , Escherichia coli/química , Proteínas Recombinantes de Fusão/biossíntese , Caspase 2/isolamento & purificação , Caspase 2/metabolismo , Clonagem Molecular , Cisteína Endopeptidases/isolamento & purificação , Cisteína Endopeptidases/metabolismo , Escherichia coli/metabolismo , Humanos , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo
6.
J Chem Theory Comput ; 16(12): 7721-7734, 2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33136389

RESUMO

Currently, two different methods dominate the field of biomolecular free-energy calculations for the prediction of binding affinities. Pathway methods are frequently used for large ligands that bind on the surface of a host, such as protein-protein complexes. Alchemical methods, on the other hand, are preferably applied for small ligands that bind to deeply buried binding sites. The latter methods are also widely known to be heavily artifacted by the representation of electrostatic energies in periodic simulation boxes, in particular, when net-charge changes are involved. Different methods have been described to deal with these artifacts, including postsimulation correction schemes and instantaneous correction schemes (e.g., co-alchemical perturbation of ions). Here, we use very simple test systems to show that instantaneous correction schemes with no change in the system net charge lower the artifacts but do not eliminate them. Furthermore, we show that free energies from pathway methods suffer from the same artifacts.


Assuntos
Fulerenos/química , Simulação de Dinâmica Molecular , Termodinâmica , Ligantes , Eletricidade Estática
7.
J Chromatogr A ; 1633: 461649, 2020 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-33166743

RESUMO

Different degrees of protein purity have been observed in immobilized metal affinity chromatography ranging from extremely high purity to moderate and low purity. It has been hypothesized that the host cell protein composition and the metal ligands are factors governing the purity of a protein obtained after immobilized metal affinity chromatography (IMAC). Ni nitrilotriacetic acid (NTA) has become the first choice for facile His-tagged protein purification, but alternative ligands such as iminodiacetic acid (IDA) with other immobilized metal ions such as Zn, Cu and Co are valuable options when the expected purity or binding capacity is not reached. Especially Cu and Zn are very attractive, due to their reduced environmental and safety concerns compared to Ni. Co and Zn are more selective than Ni and Cu. This increased selectivity comes at the cost of weaker binding. In this work, the influence of ligand choice on protein purity after IMAC was evaluated by several methods, including peptide mapping. His-tagged GFP was used as model protein. We found that host cell protein (HCP) content varies drastically between ligands, as IDA eluates generally showing higher HCP concentrations than NTA. The relative content of the key amino acids His, Cys and Trp in the sequence of the co-eluted protein does not suffice to explain co-eluting propensity. The co-elution of HCPs is mostly influenced by metal binding clusters on the protein surface and not by total content or surface concentration of metal interacting amino acids. Prediction of co-elution is not dependent on these clusters alone, due to protein-protein interactions, indicted by a relative low metal binding cluster score but high co-elution propensity and in a lot of cases these proteins are often part of complex such as ribosome and chaperones. The different co-eluting proteins were presented by a heatmap with a dendrogram. Ward's linkage method was used to calculate the distance between groups of co-eluting proteins. Clustering of co-eluting HCPs was observed according to ligand and by metal ions, with Zn and Co forming one cluster and Ni and Cu another. The co-elution of host cell proteins can be explained by clusters of metal interacting amino acids on the protein surface and by protein-protein interactions. While Ni NTA still appears to be highly advantageous, it might not be the cure-all for all applications.


Assuntos
Cromatografia de Afinidade , Íons/química , Ligantes , Metais/química , Proteômica/métodos , Iminoácidos/química , Ácido Nitrilotriacético/química
8.
Proteins ; 88(10): 1303-1318, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32432825

RESUMO

The N-terminal cleavage of fusion tags to restore the native N-terminus of recombinant proteins is a challenging task and up to today, protocols need to be optimized for different proteins individually. Within this work, we present a novel protease that was designed in-silico to yield enhanced promiscuity toward different N-terminal amino acids. Two mutations in the active-site amino acids of human Caspase-2 were determined to increase the recognition of branched amino-acids, which show only poor binding capabilities in the unmutated protease. These mutations were determined by sequential and structural comparisons of Caspase-2 and Caspase-3 and their effect was additionally predicted using free-energy calculations. The two mutants proposed in the in-silico studies were expressed and in-vitro experiments confirmed the simulation results. Both mutants showed not only enhanced activities toward branched amino acids, but also smaller, unbranched amino acids. We believe that the created mutants constitute an important step toward generalized procedures to restore original N-termini of recombinant fusion proteins.


Assuntos
Aminoácidos de Cadeia Ramificada/química , Caspase 2/química , Caspase 3/química , Cisteína Endopeptidases/química , Mutação , Proteínas Recombinantes de Fusão/química , Sequência de Aminoácidos , Aminoácidos de Cadeia Ramificada/metabolismo , Caspase 2/genética , Caspase 2/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Domínio Catalítico , Clonagem Molecular , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Cinética , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Engenharia de Proteínas/métodos , Domínios e Motivos de Interação entre Proteínas , Proteólise , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Especificidade por Substrato , Termodinâmica
9.
J Comput Chem ; 41(10): 986-999, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31930547

RESUMO

Alchemically derived free energies are artifacted when the perturbed moiety has a nonzero net charge. The source of the artifacts lies in the effective treatment of the electrostatic interactions within and between the perturbed atoms and remaining (partial) charges in the simulated system. To treat the electrostatic interactions effectively, lattice-summation (LS) methods or cutoff schemes in combination with a reaction-field contribution are usually employed. Both methods render the charging component of the calculated free energies sensitive to essential parameters of the system like the cutoff radius or the box side lengths. Here, we discuss the results of three previously published studies of ligand binding. These studies presented estimates of binding free energies that were artifacted due to the charged nature of the ligands. We show that the size of the artifacts can be efficiently calculated and raw simulation data can be corrected. We compare the corrected results with experimental estimates and nonartifacted estimates from path-sampling methods. Although the employed correction scheme involves computationally demanding continuum-electrostatics calculations, we show that the correction estimate can be deduced from a small sample of configurations rather than from the entire ensemble. This observation makes the calculations of correction terms feasible for complex biological systems. To show the general applicability of the proposed procedure, we also present results where the correction scheme was used to correct independent free energies obtained from simulations employing a cutoff scheme or LS electrostatics. In this work, we give practical guidelines on how to apply the appropriate corrections easily.


Assuntos
Eletricidade Estática , Artefatos , Sítios de Ligação , DNA/química , Distamicinas/química , Ligantes , Simulação de Dinâmica Molecular , Netropsina/química , Solventes/química , Termodinâmica , Inibidores da Tripsina/química
10.
Biotechnol Bioeng ; 114(2): 416-422, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27500401

RESUMO

The treatment of wound infection still constitutes a major threat in health care due to the increasing number of bacterial resistances and the difficulty of timely infection detection. Here, we present a smart antimicrobial system that is activated in case of infection based on elevated lysozyme activities. N-acetyl chitosan (degree of N-acetylation: 40%) was synthesized and hydrolysis by lysozyme in artificial wound fluid (AWF) was demonstrated. This resulted in the formation of N-acetylated chito oligosaccharides (COS) with a degree of polymerization of 2-5 units. The COS were shown to serve as substrate for cellobiose dehydrogenase (CDH) leading to the production of 1 mM antimicrobial hydrogen peroxide (H2 O2 ) after 24 h incubation at 37°C in AWF. Growth inhibition was seen upon incubation of Escherichia coli and Staphylococcus aureus with this chitosan-CDH system over 8 h. This approach represents the first self-regulating system for the infection responsive inhibition of bacterial growth in response to lysozyme as infection biomarker. Biotechnol. Bioeng. 2017;114: 416-422. © 2016 Wiley Periodicals, Inc.


Assuntos
Anti-Infecciosos , Desidrogenases de Carboidrato , Quitosana/química , Modelos Biológicos , Muramidase , Infecção dos Ferimentos , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Desidrogenases de Carboidrato/química , Desidrogenases de Carboidrato/farmacologia , Escherichia coli/efeitos dos fármacos , Humanos , Muramidase/química , Muramidase/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Infecção dos Ferimentos/microbiologia , Infecção dos Ferimentos/prevenção & controle
11.
Biomacromolecules ; 17(6): 2284-92, 2016 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-27214513

RESUMO

Chito-oligosaccharides (COSs) are bioactive molecules with interesting characteristics; however, their exploitation is still restricted due to limited amounts accessible with current production strategies. Here we present a strategy for the production of COSs based on hydrolysis of chitosan by using readily available glycosidases. Cellobiohydrolases (EC 3.2.1.91) were compared with chitosanases (EC 3.2.1.132) regarding their ability for COS production, and the resulting fractions were analyzed by MS and NMR. The oligosaccharides had a degree of polymerization between three and six units, and the degree of acetylation (DA) varied depending on the applied enzyme. Different cellobiohydrolases produced COSs with varying DA, and based on comprehensive NMR analysis the preferred cleavage sites of the respective enzymes that show chitosanase and chitinase activity were elucidated. The study reveals the high potential of readily available cellulolytic enzymes besides chitosanases for the production of COSs with distinct structure facilitating access to this bioactive compound class.


Assuntos
Celulose 1,4-beta-Celobiosidase/metabolismo , Quitosana/metabolismo , Glicosídeo Hidrolases/metabolismo , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Acetilação , Quitosana/química , Hidrólise , Polimerização , Streptomyces/enzimologia , Trichoderma/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...